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ABSTRACT: In present investigation the steady two-dimensional flow of an incompressible Newtonian fluid between two 

parallel plates with heat transfer in the presence of stenosis of cosine shape is studied. The governing equations are 

transformed into compatibility and energy equations, which are solved analytically with the help of Adomian Decomposition 

Method (ADM) and Regular Perturbation Method (RPM). The solutions obtained from the present analysis are given in terms 

of wall shear stress, separation point and temperature distribution through stenoised channel. The accuracy of the results is 

verified through available literature. It is found that wall shear stress and temperature increases with the development of 

stenosis and causing separation and reattachment in the region. It is observed that even at low velocity, separation occurs if 

the thickness of the stenosis is increased. Detailed discussion and graphical representations are also provided. 
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1. INTRODUCTION 
The motivation of this study comes from the investigation of 

abnormal blood flow in the stenoised artery, which may be 

due to atherosclerotic plaques developed at various locations 

in the artery. Its effect on flow of blood is discussed by many 

authors theoretically, experimentally as well as numerically. 

Forrester and Young [1] presented the theoretical as well as 

experimental results of the axisymmetric, steady flow through 

converging and diverging tube with mild stenosis. Morgan 

and Young [2] provided the approximate analytical solution 

of axisymmetric, steady flow of incompressible Newtonian 

fluid both for mild and severe stenosis by using an integral 

method; basically they presented an extension of Forrester. 

Analysis of blood flow using incompressible Newtonian fluid 

through an axisymmetric stenoised artery of cosine shape is 

given by Haldar [3]. Layek and Midya [4] presented the 

numerical solution of time dependent incompressible 

Newtonian fluid for symmetric stenosis in two dimensional 

channels. Chow and Soda [5] analyzed the steady laminar 

flow of incompressible Newtonian fluid for different physical 

quantities by considering the sinusoidal boundary. The 

abnormal flow conditions developed due to stenosis can be an 

important factor in the development and progression of 

arterial diseases. Some of further major complications 

developed through this stenosis are the growth of tissues into 

arteries, development of an intravascular clot and post-

stenotic dilatation. This type of flow also has applications in 

various fields like physiological flows and polymer science.  

In present paper, the effect of stenosis height and Reynolds 

number on flow characteristics, wall shear stress, separation 

and reattachment points and heat transfer are analyzed. The 

study of Peclet number and Brinkman number on temperature 

distribution are also presented. It is observed that the general 

patron of flow is similar to the results given in [3 - 5]. The 

results of present investigation indicate that even a mild 

collar like stenosis in a small artery can create significant 

abnormalities in the flow including the phenomenon of 

separation. 

This study presents the steady two-dimensional motion of 

incompressible Newtonian fluid in a cosine shape stenoised 

channel with heat transfer. In this analysis, we make a 

comparative study for the performance of ADM and RPM for 

highly non-linear compatibility equation in the geometry of a 

stenoised channel. The layout of the paper is as follows: The 

basic equations governing the flow, in the Cartesian 

coordinate, are given in section 2. Problem formulation is 

presented in Section 3. Section 4 and onward are dedicated 

for solution of different parameters. Section 5 provides 

graphical discussion. Conclusion is given in section 6.       

2.     BASIC EQUATIONS  

The basic equations governing steady two dimensional flow 

of non-isothermal, incompressible Newtonian fluid in the 

absence of body forces are 
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 where vu ~and~
 are the velocity components in x~  and y~  
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where superscript * is defined for the transpose of tensor.  
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3.     PROBLEM FORMULATION 
Consider the non-isothermal Newtonian fluid flow through 

the channel of infinite length having stenosis of length 2/ol . 

The coordinate system is chosen in such a way that the 

arterial system lies in plane~~ yx , such that axis~ x  

coincide with center line in the direction of flow and 

axis~ y  perpendicular to axis~ x . Consider the boundary 

of stenoised region of the form [3] as follows 
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where  xh ~
 is variable gap due to stenosis, oh2  the width of 

an unobstructed channel and   the maximum height of 

stenosis. Boundary conditions for present problem are 
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where ou is the average velocity and Q
~

 the volume flow 

rate

. 

                            
Figure 1:  Geometry of the problem. 

 

Velocity profile for steady homogeneous, two dimensional 

flows is assumed of the form 

 0),~,~(~),~,~(~~
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
.       (8) 

Introducing the dimensionless quantities as follows 
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where 1T  and oT  are temperatures on the boundary of 

stenosis and fluid respectively. 

Substituting equations (4) - (5) in equations (1) – (3) and 

making use of (8)-(9), nondimensional form of basic 

equations are obtained as follows  
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in which  Re  is the Reynolds number, Br the Brinkman 

number, Pe  the Peclet number. 

Now introducing the stream function as 
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which satisfy the continuity equation (10) identically. After 

eliminating pressure gradient term from momentum equations 

(11) - (12) and compatibility equation is obtained as  
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Boundary conditions (7) in terms of stream function 
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Due to non-linearity of (15) and (16), it is difficult to find the 

exact solution so ADM and RPM are applied to find the 

analytical solution along with boundary conditions defined in 

equation (18). 

4.    SOLUTION 

To solve the compatibility equation (15) and energy equation 

(16) along with boundary conditions (18), two methods 

namely, ADM and RPM are applied to find the series 

solutions. ADM does not require the small parameter, 

Cherruault  [6] addressed extensively the concept of rapid 

convergence of ADM and Bellomo and Monaco [7], gives a 

useful comparison between ADM and Perturbation method 

and showed the efficiency of ADM compared to the tedious 

work required by  Perturbation method. Convergence of 

ADM are shown by Adomian [8]-[9]. In RPM the flow 

variables  and   are perturbed by taking   as a small 

parameter. 

4.1 Solution of compatibility equation by ADM: 

The compatibility equation is 
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where 1L  is Adomian operator defined as  
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where A, B, C, D are functions of x  to be determined. 

Now to find the solution for different order, substituting 
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and boundary conditions becomes 
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From  (24), the zeroth order solution is 
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By using these boundary conditions, we obtain the solution 

for o  as 
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the expressions for 1  and 2  from (29) are 
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The solution of 1  is obtained by substituting o  and integrating four times with respect to y of the form 
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Similarly we can find the solution for 2  by substituting 1  

and  o  in equation (31) and integrating w.r.t. y. Equation 

(23) gives the stream function  and (14) gives the velocity 

components u and v . 

4.2   Solution of Energy Equation by ADM 
Dimensionless form of energy equation in terms of stream 

function is 
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Substituting 
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in equation (36) and comparing both sides, we obtain 

21 cyco  ,                                                (38) 

where 1c  and 2c  are functions of x  to be determine and 

first and second order temperatures are 
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subject to the boundary conditions on temperature are 
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Equation (38) and (39) gives solution as 

,1o                                                                          (42) 
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which depends upon ratio of heat production by viscous 

dissipation to heat transport by conduction. Similarly, we can 

find the expression for 2  from equation (40). 

Dimensionless form of wall shear stress  

fyx

v

y

u

wT









 








                                              (44) 

and solution up to second order is   
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(45) 

The points of separation and reattachment are the points at 

which the back flow occurs or the wall shear stress is zero, 

i.e. 0T  , then  equation (45) reduces in terms of 

Reynolds number as  

 

 
   .''

2
16170

2
'

2
10510540425

2
'79''40

2
'1334025'1155

2
'79''40

1
Re ffffffff

fff






       (46).                   

 

By using equation (46), our aim is to find graphically the 

critical Reynolds number at which the back flow occurs. 

5.    GRAPHICAL DISCUSSION  
In this section the effect of different pertinent parameters on 

wall shear stress, separation and reattachment points and 

analysis for heat transfer are presented graphically. The effect 

of Re on wall shear stress in the channel is shown in figures 

3a, 3b. It is observed that the wall shear stress becomes high 

on the stenoised region with increasing Re. The negative 

shearing corresponds to back flow which causes separation 

and reattachment points in the channel. It is observed that 

both the methods ADM and RPM give the same graphical 

results. 

 

 



3342 ISSN 1013-5316; CODEN: SINTE Sci.Int.(Lahore),28(4),3337-3344,,2016 

July-August 

 

Figure 3a: Effect of Re on wall shear stress (ADM) 

. Figure 3b: Effect of Re on wall shear stress (RPM). 

 

The effect of stenosis thickness   on wall shear stress is 

presented in figure 4a, 4b. It is observed that with the 

increase in   increases wall shear stress in the stenoised 

region and also responsible for back flow. The straight line 

presents the flow for 0 , which is known as fully 

developed or Poiseuille flow. Further more negative shearing 

is observed by ADM as compared to RPM. 
 

Figure 4a: Effect of  on wall shear stress (ADM). 

 

  
Figure 4b: Effect of  on wall shear stress (RPM). 

 

In Figures 5a, 5b zero wall shear stress is plotted for different 

values of   in the converging and diverging sections of the 

channel. The aim is to find the critical value of Re, where 

separation and reattachment could be observed. As the 

critical Re reached the separation occurs in the converging 

region of channel and reattachment point in the downstream 

region of channel. It is observed from both the figures that 

with increasing   the critical value of Re decreases.
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Figure 5a: Separation points in the converging region (ADM). 

Figure 6a: Effect of Pe  on temperature dist. by ADM. 

 

Figure 6b: Effect of Pe  on temperature dist. by RPM 

 

Figure 6a presents the effect of temperature distribution for 

Pe number by ADM. It is observed that with the increase in  
Figure 5b: Separation points in the converging region (RPM). 

Pe number temperature increases in the converging region 

and decreases in the diverging region.  Figure 6b shows the 

effect of Pe in the converging and diverging sections on 

temperature distribution. It is found that with the increase in 

Pe temperature increases over the stenosis and becomes 

negative in the converging and diverging sections due to back 

flow. It is observed that ADM shows the better results as 

compared with RPM.  

In figures 7a, 7b effects of Br on temperature distribution is 

presented. It is found that the temperature increases over the 

stenosis by the increase in Br along with the fixed values of 

the other parameters and becomes negative due to reverse 

flow. It is observed that ADM gives the better results than 

RPM. 

 

Figure 7a: Effect of Br  on temperature dist. by ADM.   Figure 
 

 

 

 

 

 

 

 

 

7b: Effect of Br  on temperature dist.(RPM) 
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6.     CONCLUSION 
In the present study, steady two-dimensional flow of an 

incompressible Newtonian fluid between two parallel plates 

with heat transfer in the presence of stenosis of cosine shape 

is presented. Underlying problem is solved with the help of 

ADM and RPM. The results thus obtained are discussed 

graphically in terms of wall shear stress, separation and 

reattachment point, temperature distribution. It is observed 

that the wall shear stress is same as given by [2 -3] and 

separation and reattachment points are in agreement with [3]. 

It is also observed that: 

(i)   Increase in Reynolds number increases the wall shear 

stress. 

(ii) Increase in thickness of stenosis increases wall shear 

stress causing separation and reattachment in the channel. 

(iii)  Development in the thickness of stenosis decreases the 

critical Reynolds number for separation and reattachment 

points, means even at low velocity, separation is observed if 

the thickness of stenosis increases.  

(iv)  By the increase in Peclet and Brinkman number 

increases the temperature in the channels. 

(v)    For  0 , Poiseuille flow is recovered. 
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