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ABSTRACT: In present investigation the steady two-dimensional flow of an incompressible Newtonian fluid between two
parallel plates with heat transfer in the presence of stenosis of cosine shape is studied. The governing equations are
transformed into compatibility and energy equations, which are solved analytically with the help of Adomian Decomposition
Method (ADM) and Regular Perturbation Method (RPM). The solutions obtained from the present analysis are given in terms
of wall shear stress, separation point and temperature distribution through stenoised channel. The accuracy of the results is
verified through available literature. It is found that wall shear stress and temperature increases with the development of
stenosis and causing separation and reattachment in the region. It is observed that even at low velocity, separation occurs if
the thickness of the stenosis is increased. Detailed discussion and graphical representations are also provided.
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1. INTRODUCTION

The motivation of this study comes from the investigation of
abnormal blood flow in the stenoised artery, which may be
due to atherosclerotic plaques developed at various locations
in the artery. Its effect on flow of blood is discussed by many
authors theoretically, experimentally as well as numerically.
Forrester and Young [1] presented the theoretical as well as
experimental results of the axisymmetric, steady flow through
converging and diverging tube with mild stenosis. Morgan
and Young [2] provided the approximate analytical solution
of axisymmetric, steady flow of incompressible Newtonian
fluid both for mild and severe stenosis by using an integral
method; basically they presented an extension of Forrester.
Analysis of blood flow using incompressible Newtonian fluid
through an axisymmetric stenoised artery of cosine shape is
given by Haldar [3]. Layek and Midya [4] presented the
numerical solution of time dependent incompressible
Newtonian fluid for symmetric stenosis in two dimensional
channels. Chow and Soda [5] analyzed the steady laminar
flow of incompressible Newtonian fluid for different physical
quantities by considering the sinusoidal boundary. The
abnormal flow conditions developed due to stenosis can be an
important factor in the development and progression of
arterial diseases. Some of further major complications
developed through this stenosis are the growth of tissues into
arteries, development of an intravascular clot and post-
stenotic dilatation. This type of flow also has applications in
various fields like physiological flows and polymer science.
In present paper, the effect of stenosis height and Reynolds
number on flow characteristics, wall shear stress, separation
and reattachment points and heat transfer are analyzed. The
study of Peclet number and Brinkman number on temperature
distribution are also presented. It is observed that the general
patron of flow is similar to the results given in [3 - 5]. The
results of present investigation indicate that even a mild
collar like stenosis in a small artery can create significant
abnormalities in the flow including the phenomenon of
separation.

This study presents the steady two-dimensional motion of
incompressible Newtonian fluid in a cosine shape stenoised
channel with heat transfer. In this analysis, we make a
comparative study for the performance of ADM and RPM for

highly non-linear compatibility equation in the geometry of a
stenoised channel. The layout of the paper is as follows: The
basic equations governing the flow, in the Cartesian
coordinate, are given in section 2. Problem formulation is
presented in Section 3. Section 4 and onward are dedicated
for solution of different parameters. Section 5 provides
graphical discussion. Conclusion is given in section 6.

2. BASIC EQUATIONS

The basic equations governing steady two dimensional flow
of non-isothermal, incompressible Newtonian fluid in the
absence of body forces are

V.V =0, )
v o= =
p—=-Vp+V-T, @)
dt
daT | =,=
pc,— =kVT +4, ®3)
dt
where \7 'F and o are the velocity vector, temperature and
constant density of fluid respectively, r) the dynamic
pressure, C,and k are specific heat and thermal

conductivity parameters, V? the Laplacian, ¢ the viscous

d

dissipation function defined as ¢ = 7-VV and — the

dt

material time derivative given as
46)_00) 590,520
dt ot X

where U and V are the velocity components in X and Y

4)

directions and 7 is extra stress tensor defined as

T = A, (%)
where 4 is dynamic viscosity and A, is first Rivlin-Ericksen
tensor defined as
A =W +(W)",
where superscript * is defined for the transpose of tensor.
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3. PROBLEM FORMULATION
Consider the non-isothermal Newtonian fluid flow through

the channel of infinite length having stenosis of length |0 /2.
The coordinate system is chosen in such a way that the
arterial system lies in XYy —plane, such that X —axis
coincide with center line in the direction of flow and
y —axis perpendicular to X —axis . Consider the boundary
of stenoised region of the form [3] as follows

et

0 0
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where h(i) is variable gap due to stenosis, 2h, the width of

an unobstructed channel and A the maximum height of
stenosis. Boundary conditions for present problem are

§=V=0,T=T, at ¥ =h(X),
a_, ar_, at  §=0,
oy &

h(X) ~ 1
Q:J.O Udy:_zuoho’

" SR, 3 ™
(X)_ 4 4 where U, is the average velocity and Q the volume flow
h, otherwise, rate
(6)
y
A
h(X ); hw %

A

1o/2 v

Figure 1: Geometry of the problem.

Velocity profile for steady homogeneous, two dimensional
flows is assumed of the form

=(IX.9), (X9, 0. ®
Introducing the dimensionless quantities as follows

X oy 0 he o T-T
X:—’ y:l' u:—, V:—, p: 0 , = 0’
l, h u Uy JTTRN T,-T,
©)
where T, and T, are temperatures on the boundary of

stenosis and fluid respectively.

Substituting equations (4) - (5) in equations (1) — (3) and
making use of (8)-(9), nondimensional form of basic
equations are obtained as follows

sM @—o (10)
OX
Re[éua—u J +V u, (12)
Reo 5u@+ = ap+5v 2 (12)
oX ay oy

2 2
00 00 2 2( ou ou ov
Pg ou—+v—|=V 0+Brf4s6 | — | +| —+6—| |
OX oy OX oy OX

(13)
where

h h
5= Re =2

2
u uh, c,

Br=—oH pgo ol

v k(T,-T) ok

in which Re is the Reynolds number, Brthe Brinkman

number, Pe the Peclet number.

Now introducing the stream function as

u:a_l// V:_é‘a_l//

oy OX

which satisfy the continuity equation (10) identically. After
eliminating pressure gradient term from momentum equations
(11) - (12) and compatibility equation is obtained as

Res YY) _ys

o(y, x)

and energy equation takes the form

, (14)

(15)
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v20 - pes W0 g, L™= I.U .[ (*)dydydydy. (21)
8(yl X) -1 .
) ) , Apply L, to equation (19), we get
2 2 2
2| 0w oy 20y 206 A 3 B 2 1
45°| — | +|—=5-0"—5| |-6"—= =—Yy' +—y +Cy+D+
(WWJ [ayz asz ox2 v 6 y 2 y y L
(16) 8(1//, Vz‘//) Oy , Oy |
G RO arn) % ey
where V2 =52 —t+t is dimensionless form of ’
ox® oy (22)
Laplacian. The dimensionless form of (6) is where A, B, C, D are functions of X to be determined.
c 1 1 Now to find the solution for different order, substituting
f =1—2(1+cos(4z x)) —T<x<, =
2 4 4 y =y, (xY), (23)
— i n=0
=1 otherwise, an in equation (22), we obtain

h(X
where f _ h) and e =A4/h,.
hO
Boundary conditions (7) in terms of stream function
becomes

Yooyt g

1 :fv
0y 2 !
2
‘Zy‘f:o, v=0 gjzo a y=0

(18)
Due to non-linearity of (15) and (16), it is difficult to find the
exact solution so ADM and RPM are applied to find the
analytical solution along with boundary conditions defined in
equation (18).
4. SOLUTION
To solve the compatibility equation (15) and energy equation
(16) along with boundary conditions (18), two methods
namely, ADM and RPM are applied to find the series
solutions. ADM does not require the small parameter,
Cherruault [6] addressed extensively the concept of rapid
convergence of ADM and Bellomo and Monaco [7], gives a
useful comparison between ADM and Perturbation method
and showed the efficiency of ADM compared to the tedious
work required by Perturbation method. Convergence of
ADM are shown by Adomian [8]-[9]. In RPM the flow
variables ¥ and € are perturbed by taking & as a small
parameter.

4.1 Solution of compatibility equation by ADM:
The compatibility equation is

Ly =Red a("’”vz'/’)—a“ 0V _p52 OV
ay,x) ox* ox*oy?
(19)
where L, is Adomian operator defined as
84
L, = Wv (20)

and the inverse operator is

Zt//n(><.y)=/j:y‘*+§yz+Cy+D+L11
n=0

a((iwn (% ). V2w (%, y))]
RedS n-0

n=0
a(y, x)
o' Qv (x,Y)) o' wa(x,Y))
_ 54 n=0 _ 252 n=0
i ox* oxloy* |
(24)
and boundary conditions becomes
o0
a go l//n (X7 y) 0 1
— =0, , =——,
& I’IEO Yn (x,y) )
6=1 at y=f,
A% mon) @)
T =0, néown(x, y) =0,
060
—=0 at y=0.
oy
From (24), the zeroth order solution is
A B
y/ozgy3+5y2+Cy+D, (26)
and the boundary conditions for i, becomes
oy 1
—=0, y,=—=, at =f,
o 14 2 y
2
a@y"? =0, y, =0, at y=0.
(@7)

By using these boundary conditions, we obtain the solution
for v, as
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WV, = %(772 —3), where 77 :% (28)
Now the recursive relation form (24) is and
2 ) r 2 7
Re 56(Wn<x’v)('v ')/fn(xly) . a(u/o<x,y),v wl(x,y))
] oly, x oly, x
'//n+l(x’y) =L 4 4 ! Red (y 2) -
542 Elx'y) 520 ‘”g(x'zy) oy Lt a(wl(x,y),v V/o(x,y))
ox ox“oy Vol y)=h
a(y,x)
(29) 4 4
the expressions for y, and y, from (29) are Py 0 V’l(4X'V) 982 0 ‘//él(xlzy)
2
a(wo(x,y),v wo(x,y)) L X X0y
Re s - (31)
-1 8(y,><)
l//]_(xr y) = L]_ 4 4 '
46 V/O(le) 26 l//o(X,y)
d 5 % T 53
X X oy
(30)
The solution of i/, is obtained by substituting i/, and integrating four times with respect to y of the form
2885152 f"(lon2 —1)—852 £:2 (Re(5774 —17772 + 24)+ 7214 (5772 + 3))
2
on (772 —1) +3f'<3Re§2ff"(5774 —18772 +29)—24Re(772 —5)—6452f2f"'(2772 —3))
Wy = ——
1™ 26880 —1445%5 212 (2772 - 3)— Re & 2 f"'(5774 - 26772 + 69)
|+ 66Tf" (6777 - 28775 + 49772 - 27)— 485t (3777 - 7775 + 7;72 - 3)+ 24521214 (;72 - 5)_
(32)
Similarly we can find the solution for v/, by substituting /, 9=cpy+cy+ LEl
and /, in equation (31) and integrating w.r.t. y. Equation o, 0)
(23) gives the stream function and (14) gives the velocity Pes Py Br
components UandV. (¥, %)
4.2 Solution of Energy Equation by ADM 2 \2 2 2 \2 2
Dimensionless form of energy equation in terms of stream 22| 2V | | 2w 20| |_4200
function is oxoy 6y2 o’ x>
oy, 0
Ly0 = Pes . 9) - Br (36)
o(y, x) Substituting
2,V (% 2% 0%’ 0= ie (x,Y), ¥ = i (x,) (37)
45° + 2—52 5 —52—2 —70 X Y)W = 70% 1Y),
oxoy oy ox ox n= n-

(33)
where

62
oy
is an Adomian operator and inverse operator is defined as

L, (%)= [ [ (*)dydy. (35)
Apply szl to equation (33), we get

L2 = (34)

in equation (36) and comparing both sides, we obtain
0, =Cy+C,, (38)

where C, and C, are functions of X to be determine and
first and second order temperatures are
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pes Wo0o) g
a(y, x)

2
452(621//0 j
oxoy 5

2 2
+ 8Zl/jo _52 82lr//o X
ayZ aXZ

0, =L

0’6

0

(39)

Pea‘(a(%'gl) b eo)j )

a(y. x) a(y. x)

2 2 2 2

a 20y, 0y 40y, 0y

by =Ly 45 ——+ 5 5+ 5 5 )
OXoy  oxoy oy oy ox O

2 2 2 2 2
52[@ vo 0y Mflﬁwoj ox

2 2
Iy 0y

¥
8y2 8)(2 8y2 8X2

(40)

3Br!n2 71?

4480f

+54f2f"2(15776

which depends upon ratio of heat production by viscous
dissipation to heat transport by conduction. Similarly, we can

find the expression for «92 from equation (40).
Dimensionless form of wall shear stress

. (6u 56\/)
w=| _to—
oy ox y=f

and solution up to second order is

(44)

ISSN 1013-5316; CODEN: SINTE

_ a1yt + 2052 +29)+ 85" f'

280072 +1)+ 85% £+ (307° — 260" + 902 + 0+ 56211 (2% ~ 32 ~3)

3341
subject to the boundary conditions on temperature are
o0
Y 0,(x,y)=1 at =f
oz n (X, y) y
o0
o\ Z On(x,y)
and =0 ‘. at y =0.
oy
(41)
Equation (38) and (39) gives solution as
0, =1 (42)
4. 2 70(774—772+2) y
_s2 ff"(15776 - 27774 + 8772 + 8)
(43)
3 3Ref’ 2
-+ 0+
112 35
Ty =—5 .
2 2
Re 3
f —(40ff"—79f'2)+—(2ff"—13f'2)
26950 10
(45)

The points of separation and reattachment are the points at
which the back flow occurs or the wall shear stress is zero,

ie. T,=0 , then equation (45) reduces in terms of
Reynolds number as

1 . 2 o 2 2.2 2.
Re = o\ [ 1155f +/1334025 '“ ~\40ff'—79f“ k40425-105108 f*“+161705° ff (46).
5‘40ff"—79f' )

By using equation (46), our aim is to find graphically the
critical Reynolds number at which the back flow occurs.

5. GRAPHICAL DISCUSSION

In this section the effect of different pertinent parameters on
wall shear stress, separation and reattachment points and
analysis for heat transfer are presented graphically. The effect
of Re on wall shear stress in the channel is shown in figures

3a, 3b. It is observed that the wall shear stress becomes high
on the stenoised region with increasing Re. The negative
shearing corresponds to back flow which causes separation
and reattachment points in the channel. It is observed that
both the methods ADM and RPM give the same graphical
results.
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Figure 3a: Effect of Re on wall shear stress (ADM)
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. Figure 3b: Effect of Re on wall shear stress (RPM).

The effect of stenosis thickness & on wall shear stress is
presented in figure 4a, 4b. It is observed that with the
increase in & increases wall shear stress in the stenoised
region and also responsible for back flow. The straight line
presents the flow fore =0, which is known as fully
developed or Poiseuille flow. Further more negative shearing
is observed by ADM as compared to RPM.
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Figure 4a: Effect of & on wall shear stress (ADM).
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Figure 4b: Effect of & on wall shear stress (RPM).

In Figures 5a, 5b zero wall shear stress is plotted for different
values of & in the converging and diverging sections of the
channel. The aim is to find the critical value of Re, where
separation and reattachment could be observed. As the
critical Re reached the separation occurs in the converging
region of channel and reattachment point in the downstream
region of channel. It is observed from both the figures that
with increasing & the critical value of Re decreases.
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Figure 5a: Separation points in the converging region (ADM).
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Figure 6a: Effect of P& on temperature dist. by ADM.
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Figure 6b: Effect of Pe on temperature dist. by RPM
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Figure 6a presents the effect of temperature distribution for
Pe number by ADM. It is observed that with the increase in
Figure 5b: Separation points in the converging region (RPM).

Pe number temperature increases in the converging region
and decreases in the diverging region. Figure 6b shows the
effect of Pe in the converging and diverging sections on
temperature distribution. It is found that with the increase in
Pe temperature increases over the stenosis and becomes
negative in the converging and diverging sections due to back
flow. It is observed that ADM shows the better results as
compared with RPM.

In figures 7a, 7b effects of Br on temperature distribution is
presented. It is found that the temperature increases over the
stenosis by the increase in Br along with the fixed values of
the other parameters and becomes negative due to reverse
flow. It is observed that ADM gives the better results than
RPM.
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Figure 7a: Effect of Br on temperature dist. by ADM. Figure

7b: Effect of Br on temperature dist.(RPM)
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6. CONCLUSION

In the present study, steady two-dimensional flow of an
incompressible Newtonian fluid between two parallel plates
with heat transfer in the presence of stenosis of cosine shape
is presented. Underlying problem is solved with the help of
ADM and RPM. The results thus obtained are discussed
graphically in terms of wall shear stress, separation and
reattachment point, temperature distribution. It is observed
that the wall shear stress is same as given by [2 -3] and
separation and reattachment points are in agreement with [3].
It is also observed that:

(i) Increase in Reynolds number increases the wall shear
stress.

(ii) Increase in thickness of stenosis increases wall shear
stress causing separation and reattachment in the channel.

(iii) Development in the thickness of stenosis decreases the
critical Reynolds number for separation and reattachment
points, means even at low velocity, separation is observed if
the thickness of stenosis increases.

(iv) By the increase in Peclet and Brinkman number
increases the temperature in the channels.

(v) For & =0, Poiseuille flow is recovered.
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